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Statistical fluctuations in the eigenvalues of the scattering, impedance, and admittance matrices of two-port
wave-chaotic systems are studied experimentally using a chaotic microwave cavity. These fluctuations are
universal in that their properties are dependent only upon the degree of loss in the cavity. We remove the direct
processes introduced by the nonideally coupled driving ports through a matrix normalization process that
involves the radiation-impedance matrix of the two driving ports. We find good agreement between the
experimentally obtained marginal probability density functions �PDFs� of the eigenvalues of the normalized
impedance, admittance, and scattering matrix and those from random matrix theory �RMT�. We also experi-
mentally study the evolution of the joint PDF of the eigenphases of the normalized scattering matrix as a
function of loss. Experimental agreement with the theory by Brouwer and Beenakker for the joint PDF of the
magnitude of the eigenvalues of the normalized scattering matrix is also shown.
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I. INTRODUCTION

The scattering of short-wavelength waves inside enclo-
sures manifests itself in several fields of physics and engi-
neering such as quantum dots �1�, atomic nuclei �2�, acoustic
resonators �3,4�, electromagnetic compatibility �5�, etc. Of
particular interest is the case when the ray trajectories within
the enclosure show chaotic dynamics in the classical limit.
This interest has spawned the field of “wave chaos” �or
“quantum chaos”�, and has attracted much theoretical and
experimental work �6,7� to understand its nature. On account
of the small wavelength of the scattered waves, as compared
to the characteristic length scale of the enclosure, the re-
sponse of these systems exhibit extreme sensitivity to small
changes in configuration, driving frequency, nature of driv-
ing ports, ambient conditions such as temperature, etc. Thus,
an intimate knowledge of the response of any such system
for a given well-defined stimulus or system configuration
will not provide any foresight in predicting the response of a
similar system when the stimulus or system configuration is
slightly altered. This calls for a statistical approach to quan-
tify the nature of such wave-chaotic systems.

In this regard, the random matrix theory �RMT� �8� has
proved to be an integral tool in predicting universal statistical
aspects of wave chaotic systems. It has been conjectured that
in the short-wavelength regime, RMT can be used to model
wave-chaotic systems. In particular, the statistics of systems
that show time-reversal symmetry are conjectured to be de-
scribed by the Gaussian orthogonal ensemble �GOE� of ran-
dom matrices, while the statistics of systems showing broken
time-reversal symmetry are conjectured to be described by
the Gaussian unitary ensemble �GUE� of random matrices.
There is also a third random matrix ensemble corresponding
to certain systems with spin interactions �gaussian symplec-
tic ensemble�. RMT provides a potential framework for un-

covering universal statistical properties of short-wavelength
wave chaotic systems �e.g., Ericson fluctuations in nuclear
scattering �7,9� and universal conductance fluctuations
�UCF� in quantum-transport systems �10��.

Since the applicability of the RMT and the concomitant
universal statistics is conjectural rather than rigorous, and
since this conjectured applicability is said to be asymptotic in
the limit of wavelength small compared to the system size, it
is important to test the RMT conjecture against results ob-
tained for specific real situations.

Experimentally, however, validating the applicability of
the RMT has always proved challenging. One of the most
common problems encountered by experimentalists is the
presence of nonuniversal, system-specific artifacts intro-
duced into the measured data by the experimental apparatus.
These are generally referred to as the “direct processes,” as
opposed to the “equilibrated processes” which describe the
chaotic scattering within the system �11�. A typical example
presents itself while measuring the statistical fluctuations in
the scattering of microwaves through cavities with chaotic
ray dynamics. These fluctuations are studied by exciting the
cavity through coupled ports and observing the response �re-
flection and transmission� for a given excitation. Generally, it
is not possible to perfectly couple �ideally match� the ports to
the cavity at all frequencies. Here by “perfect coupling” we
refer to the situation in which there is no prompt reflection of
a wave incident from an incoming channel on a cavity port.
Thus, such a wave would be entirely transmitted into the
cavity, and any reflection coefficient measured from that port
is the result of waves that have entered the cavity, bounced
around, and subsequently been reflected back toward the
port. �Subsequently in this section and the next section, we
give a more precise definition of perfect coupling in terms of
the port radiation impedance and the characteristic imped-
ance of the incoming channel.� We refer to the deviation
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from perfect coupling as “mismatch.” This mismatch, which
is strongly determined by the geometry of the port, manifests
itself as systematic fluctuations in the measured data. The
result is that the measured data depends on the nonuniversal,
direct processes of the ports, as well as the underlying uni-
versal, equilibrated processes of the chaotic scattering sys-
tem.

Several approaches have been formulated to account for
these direct processes �12–14� of which the “Poisson Kernel”
approach introduced by Mello, Pereyra, and Seligman is of
special mention. Based on an information-theoretic model,
the Poisson Kernel characterizes the direct processes be-
tween the ports and the cavity by the ensemble-averaged

scattering matrix ��SJ��. In order to apply this theory to a
specific real situation, it is thus necessary to obtain a quantity

that plays the role of the ensemble average ��SJ�� appropriate
to that specific system. For example, one scheme proposed

for determining such a surrogate for ��SJ�� for a specific sys-
tem used system configuration averaging. We denote this sur-

rogate for ��SJ�� as �SJ�. Averaging over configurations, how-
ever, may suffer from excessive statistical error if the number
of configurations averaged over is insufficiently large. Thus,
to improve the estimate of the scattering coefficient statistics,
Refs. �15,16�, which treat one port �scalar S� scatterers, make
use of an ergodic hypothesis �17,18� to include an additional
running average over frequency ranges that include many
resonances but are sufficiently small that the scattering coef-
ficient statistics can be assumed to be nearly constant �i.e., a
frequency range where the port coupling strengths are nearly
constant�. Using this approach, Refs. �15,16� have investi-
gated the universal fluctuations in the reflection coefficient of
one-port wave-chaotic microwave cavities. This was shown
to produce favorable results for one-port systems when com-
pared with RMT predictions. We note, however, that the
analysis is highly dependent on the accuracy of the
experimentally-obtained �S�, which is prone to statistical er-
rors.

The situation can become even more complicated when
dealing with N ports. In the recent two-port paper, Ref. �19�,
the authors circumvent such problems by taking careful steps
to ensure that the driving ports are nearly perfectly coupled
to the cavity in the frequency range where the data is ana-
lyzed. In doing so, Ref. �19� achieves good agreement be-
tween the experimental results for the fluctuations in the
transmission coefficient, and the RMT predictions for time-
reversal-symmetric and for broken-time-reversal-symmetric
cavities. We note, however, that Ref. �19� is for the case of
perfectly coupled ports and that it is desirable to also deal
with arbitrary port couplings.

In Refs. �20,21� a unique method to characterize the direct
processes between the cavity and the driving ports was in-
troduced. This method, which is motivated by
electromagnetic-wave propagation inside complex enclo-
sures, makes use of impedances to characterize the direct-
processes rather than the ensemble-averaged scattering ma-
trix as in Ref. �12�. For an N-port scattering system, the

scattering matrix SJ models the scattering region of interest in
terms of an N�N complex-valued matrix. Specifically, it

expresses the amplitudes of the N outgoing scattered waves
�b̃� in terms of the N incoming waves �ã� at the location of

each port �i.e., b̃=SJã�. The impedance matrix ZJ, on the other
hand, is a quantity which relates the complex voltages �Ṽ� at

the N driving ports to the complex currents �Ĩ� in the N ports

�i.e., Ṽ=ZJĨ�. The matrices SJ and ZJ are related through the
bilinear transformation, SJ=ZJ0

1/2�ZJ+ZJ0�−1�ZJ−ZJ0�ZJ0
−1/2 where

ZJ0 is the N�N real, diagonal matrix whose elements are the
characteristic impedances of the waveguide �or transmission
line� input channels at the N driving ports. Like SJ, ZJ is also
a well-established physical quantity in quantum mechanics.
Just as the elements of SJ represent the transition probabilities
from one state to the other in a quantum scattering system, ZJ

is an electromagnetic analog to Wigner’s reaction matrix
�22�, which linearly relates the wave function to its normal
derivative at the boundary separating the scattering region
from the outside world.

References �20,21� have shown that the direct processes
can be quantified by the “radiation impedance” of the driving
ports. For a cavity driven by a single port, the radiation im-
pedance of the port is that impedance observed at the refer-
ence plane of the port which retains its coupling geometry
but has the distant walls of the cavity moved out to infinity
and an outward radiation condition imposed. Experimentally,
this can be realized by lining the walls that are distant from
the port with microwave absorber. The one-port radiation
impedance, denoted Zrad, is thus a frequency dependent,
complex scalar quantity which depends only on the local
structure of the port and is not influenced by the shape of the
distant cavity boundaries; Zrad=Re�Zrad�+ i Im�Zrad�, where
Re�Zrad� is the “radiation resistance” which quantifies the
energy dissipated in the far field of the radiating port, and
Im�Zrad� is the “radiation reactance” which arises from en-
ergy stored in the near field of the radiating port. Zrad thus
presents a nonstatistical experimentally viable way to quan-
tify the direct processes in a wave-chaotic system for any
given port geometry, without resorting to averaging.

This radiation impedance approach has been used suc-
cessfully by Refs. �23,24� for a two-dimensional, wave-
chaotic resonator which is driven by a single port. In Ref.
�23�, the authors used the measured radiation impedance Zrad
of the driving port to normalize the measured cavity data Z
and recover the universal normalized cavity impedance z
= �Z− i Im�Zrad�� /Re�Zrad�. This normalized impedance z rep-
resents the scalar cavity impedance when the driving port is
perfectly coupled to the cavity �i.e., Zrad=Z0, where Z0 is the
characteristic impedance of the transmission line connected
to the port�. Reference �23� has shown that the probability
density functions �PDFs� of Re�z� and Im�z� are independent
of the geometry of the coupling port, but rather depend
solely on the degree of quantifiable loss in the system. Ref-
erence �24� carried forward the one-port results of Ref. �23�
to relate z to the normalized scattering coefficient
s= �z−1� / �z+1�, which describes the scattering fluctuations
in a cavity which is perfectly coupled to its driving port. This
expression for s follows from classical electromagnetic
theory and relates the scattering coefficient at the plane of
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measurement with the load impedance �25� on a transmission
line. In Refs. �26,27� a similar expression for the normalized
scattering coefficient is given in terms of Wigner’s reaction
matrix �K�, i.e., s̆= �1− iK� / �1+ iK� with z= iK. The two
quantities s and s̆ differ in phase by � radians. This extra
phase contribution can be easily absorbed into the uniformly-
distributed phase of s �Ref. �24�� thereby yielding identical
statistical descriptions for s and s̆.

Both Refs. �23,24� have been able to experimentally
verify several universal statistical properties of z and s,
which are in good agreement with numerical results from the
random matrix theory. The radiation impedance approach to
characterizing the direct processes in wave-chaotic systems
has also been independently investigated by Ref. �28� in a
one-port, three-dimensional, mode-stirred chamber. Refer-
ences �20,21� have also shown that in the limit that the num-
ber of samples determining the average �S� goes to infinity,

SJrad= �SJ� thereby making contact with the Poisson Kernel
approach, where Srad= �Zrad−Z0� / �Zrad+Z0�. This connection
has been experimentally established in Refs. �24,29�.

Extending the radiation impedance approach to two-port
wave-chaotic systems

Here, we experimentally extend the radiation impedance
approach of Refs. �20,21� to two-port chaotic cavities. In
general, for a N-port system, the radiation impedance is now

an N�N complex valued, symmetric matrix �ZJrad�. If the N

ports are very far apart, ZJrad is diagonal, but we do not as-
sume that here. Reference �21� has shown that the measured

N�N impedance matrix of a N port, wave-chaotic cavity �ZJ�
has a mean part given by the radiation impedance matrix

�ZJrad� and a universal fluctuating part �zJ�, which is scaled by

the radiation resistance matrix �Re�ZJrad��. Thus,

ZJ = i Im�ZJrad� + �Re�ZJrad��1/2zJ�Re�ZJrad��1/2. �1�

From �1�, we can easily extract zJ

zJ= �Re�ZJrad��−1/2�ZJ − i Im�ZJrad���Re�ZJrad��−1/2. �2�

The normalized scattering matrix sJ is

sJ= �zJ− 1J��zJ+ 1J�−1, �3�

where 1J is the N�N identity matrix.
The normalized scattering matrix sJ can also be obtained

from the cavity scattering matrix SJ and the radiation scatter-

ing matrix SJrad by converting these quantities to the cavity

and radiation impedances, ZJ and ZJrad, respectively through

ZJ = ZJ0
1/2�1J + SJ��1J − SJ�−1ZJ0

1/2

and

ZJrad = ZJ0
1/2�1J + SJrad��1J − SJrad�−1ZJ0

1/2, �4�

and by then using Eqs. �2� and �3�. The matrix ZJ0 is a real
diagonal matrix whose elements are the characteristic imped-

ances of the transmission lines connected to the driving
ports.

The normalized quantities zJ and sJ represent the imped-
ance and scattering matrix when the N ports are perfectly

coupled to the cavity, i.e., when ZJrad=ZJ0. Since, in general,

ZJrad is a smoothly varying function of frequency and of the
coupling-port structure, Eqs. �2� and �3� yield the perfectly
coupled �ideally matched� impedance and scattering matrix
over any arbitrarily large range of frequency and for any port
geometry.

Reference �21� predicts that the PDFs of the eigenvalues

of zJ which are contained in the diagonal matrix �JzJ, and PDFs
of the eigenvalues of sJ which are contained in the diagonal

matrix �JsJ are qualitatively similar to the PDFs of z and s in
the one-port case and that they are dependent only on the
loss parameter of the cavity. Loss is quantified by the expres-
sion k2 / ��kn

2Q� �20,21�. Here, k=2�f /c is the wave number
for the incoming frequency f and �kn

2 is the mean spacing of
the adjacent eigenvalues of the Helmholtz operator, �2+k2,
as predicted by the Weyl formula �30� for the closed system.
The use of the Weyl formula here is conventionally accepted
for the lack of a more complete treatment which is applicable
to open systems or to systems with high absorption �as dis-
cussed in this paper�. The quantity Q represents the loaded
quality factor of the cavity. The quantity k2 / ��kn

2Q� thus rep-
resents the ratio of the frequency width of the cavity reso-
nances due to distributed losses to the average spacing be-
tween resonant frequencies. Reference �20� also predicts that

the variance ��2� of the PDFs of Re��JzJ� and Im��JzJ� for time-
reversal symmetric systems with k2 / ��kn

2Q��1 are related
to k2 / ��kn

2Q� through,

�
Re��JzJ�
2

= �
Im��JzJ�
2

=
1

�

1

k2/��kn
2Q�

. �5�

This relation has been verified experimentally in Ref. �23�
for a one-port cavity and will be assumed to hold true for the
two-port results discussed in this paper for data sets with
k2 / ��kn

2Q��5. For data sets with k2 / ��kn
2Q�	5, the follow-

ing procedure is employed. First, we numerically generate
marginal PDFs of the real and imaginary parts of the normal-
ized impedance eigenvalues using random-matrix Monte
Carlo simulations with square matrices of size N=1000, and
the value of k2 / ��kn

2Q� in the simulations ranging from 0.1
to 5 in steps of 0.1. We determine the variance ��2� of these
numerically generated PDFs and fit their dependence on
k2 / ��kn

2Q� to a polynomial function �2=
�k2 / ��kn
2Q�� of

high order. We then determine the variance of the PDF of the
real part, i.e., �

Re��JzJ�
2 �which is equal to the variance of the

PDF of the imaginary part �
Im��JzJ�
2

to good approximation

�20,21,23�� of the experimentally-determined normalized im-
pedance eigenvalues and solve the inverse polynomial func-
tion k2 / ��kn

2Q�=
−1��
Re��JzJ�
2 � to obtain a unique estimate of

k2 / ��kn
2Q� corresponding to that experimental data set.

This paper is organized into the following sections. Sec-
tion II explains the experimental setup and the data acquisi-
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tion process. By using the measured frequency-dependent
radiation impedance matrix, we carry out the normalization
of the cavity impedance to uncover the universally fluctuat-
ing zJ which in turn yields sJ and the normalized admittance
matrix yJ. Section III is divided into four sections and pre-
sents our experimental results on the universal fluctuations in
the eigenvalues of sJ, zJ, and yJ. Firstly, in Sec. III A, the sta-
tistical independence of the magnitude and phase of the ei-
genvalues of sJ is experimentally established. The marginal
distributions for the magnitude and phase of the eigenvalues
of sJ are then compared with predictions from the RMT. Sec-
tion III B then explores the evolution of the joint PDF of the
sJ eigenphases as a function of increasing loss. In Sec. III C,
we experimentally test the predictions for the joint PDF of
sJ sJ† �where † denotes the conjugate transpose� from Ref. �31�
as a function of cavity loss. Section III D then shows experi-
mental data testing of the similarity in the PDFs for the ei-
genvalues of zJ and yJ and also compares these experimentally
obtained PDFs with those from the RMT. A technical issue
encountered in these two-port experiments is the presence of

nonzero, off-diagonal terms in the measured ZJrad. These
terms account for the direct-path processes �“cross talk”� be-
tween the two ports and come about because of the finite
physical separation between the two ports in the experiment
during the radiation measurement. The role of these nonzero,

off-diagonal ZJrad terms in determining the universal PDFs of
zJ is explained in Sec. IV. Section V concludes this paper with
a summary of our experimental findings.

II. EXPERIMENTAL SETUP, DATA ACQUISITION, AND
CONSTRUCTION OF NORMALIZED zJ, sJ AND yJ

Microwave-cavity resonators with irregular shapes �where
the classical ray trajectories are chaotic� have proved to be a
favored test bed to validate statistical predictions on chaotic
scattering �7�. In this paper, we present findings on an air-
filled, quarter bow-tie shaped billiard cavity �Fig. 1�a��
driven by two ports. The cavity is 7.87 mm deep and be-
haves as a two-dimensional resonator when the driving fre-
quency is less than 19.05 GHz. The curved walls ensure that
the ray trajectories are chaotic and that there are only isolated
classically periodic orbits �32�. Experimental studies on the
eigenvalue statistics �33�, eigenfunction statistics �34,35�,
one-port impedance �23�, and one-port scattering statistics
�24� as well as an impedance-based Hauser-Feschbach-type
relation �36� have produced good agreement with theoretical
predictions based on the RMT.

To set up the investigation, we introduce two driving ports
�Fig. 1�b�� which are placed roughly 20 cm apart, and are
labeled Port-1 and Port-2. The ports are located sufficiently
far away from the side walls of the cavity so that the near-
field structure of each port is not altered by the walls. Both
ports are sections of coaxial transmission lines, where the
exposed center-conductor extends from the top plate of the
cavity and makes contact with the bottom plate, injecting
current into the bottom plate �Fig. 1�c��. The ports are non-
identical; the diameter of the inner conductor is 2a
=1.27 mm for Port-1 and 2a=0.635 mm for Port-2.

As in our previous studies �23,24�, the normalization of
the measured data is a two-step procedure. The first step,
which we refer to as the “cavity case,” involves measuring a

large ensemble of the full-2�2 scattering matrix SJcav

=� S11 S12

S21 S22
� using an Agilent E8364B Vector Network Ana-

lyzer. To realize this large ensemble, two metallic perturbers
�shown as gray solids in Fig. 1�a��, each of typical dimen-
sions 6.5 cm�4 cm�0.78 cm, are used. The perturbers are
roughly the order of a wavelength in size at 5 GHz. The
edges of the perturbers are intentionally serrated to further
randomize the wave scattering within the cavity by prevent-
ing the formation of standing waves between the straight
wall segments of the cavity and the edges of the perturba-
tions. The perturbers are systematically translated and rotated
through one hundred different locations within the volume of
the cavity. Hence each orientation of the two perturbers re-
sults in a different internal field structure within the cavity.
Thus we measure one hundred cavity configurations all hav-
ing the same volume, coupling geometry for the driving

FIG. 1. �a� Top view of quarter-bow-tie microwave cavity used
for the experimental “cavity case.” The two perturbations with ser-
rated edges are shown as the gray shapes. The small, gray,
uniformly-spaced rectangles lining the side walls of the cavity rep-
resent 2 cm-long strips of microwave absorber which are used to
control the loss in the cavity. �Loss Case 0: 0 strips, Loss Case 1: 16
strips, Loss Case 2: 32 strips�. �b� The implementation of the ex-
perimental “radiation case” is shown. The gray lining on the side
walls is a homogenous layer of microwave absorber �2 mm thick.
The physical dimensions of the cavity are shown in the schematic.
The approximate locations of the two driving-ports are also shown.
�c� Cross section view of both driving-ports inside the cavity. The
cavity is 7.87 mm in depth. The diameter of the inner conductor is
2a �=1.27 mm for Port 1; =0.635 mm for Port 2�.
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ports, and almost exactly the same cavity conduction loss.
For each configuration of the perturbers, SJ is measured as a
function of frequency from 3 to 18 GHz in 16 000 equally
spaced steps. Thus, an ensemble of 1,600,000 cavity scatter-
ing matrices SJ is collected. Special care is taken not to bring
the perturbers too close to the ports so as not to alter the
near-field structure of the ports.

The dominant loss mechanism in the empty cavity is due
to ohmic losses in the broad top and bottom plates of the
cavity. The fluctuations in loss from mode-to-mode are small
and come from differences in field configurations around the
side walls. The degree of loss can be increased in a con-
trolled manner by partially lining the inner side walls with
2 cm-long strips of microwave absorber �Fig. 1�a�� having
uniform spacing. Three lossy cavity cases, labeled “Loss
Case 0:” with no absorbing strips, “Loss Case 1:” with 16
absorbing strips, and “Loss Case 2:” with 32 absorbing
strips, are measured. Along with frequency, the three “loss
cases” lead to an experimental control over the value of
k2 / ��kn

2Q� from 0.9 to 28.
To make a quantitative assessment of the degree of “non-

ideal coupling” �mismatching� of the two ports with the cav-
ity, we compute the transmission coefficient Tcoup of the ports
�16� as a function of frequency from 3 to 18 GHz. We define

Tcoup=1− ��̂�S↔��2, where �̂�SJ� are the two complex scalar ei-

genvalues of �SJ�. Here, �SJ� is the average over the measured

ensemble of SJ at each frequency. Tcoup=1�0� represents the
case when the ports are perfectly matched �mismatched� to
the cavity. The inset in Fig. 2 shows the PDF of the measured
Tcoup �i.e., P�Tcoup�� for a Loss Case 0 cavity from
3 to 18 GHz. The PDF is fairly widely spread over the range
0 to 1 with a mean value of �0.7, and with a standard de-
viation of �0.3. An analysis of the coupling and loss for the
scattering matrix in similar microwave cavities is presented
in Ref. �37�.

The degree to which the two perturbations produce a
change in the internal field structure of the cavity can be
qualitatively inferred by looking at the frequency correla-
tions in the measured SJ data. In Fig. 2 for Loss Case 0, the
frequency correlation function ���f�

=
��S11�f0���S11�f0+�f���−��S11�f0�����S11�f0+�f���

��S11�f0����S11�f0+�f��
with f0=3 GHz is shown

as the red circles. The averaging �¯� is done over the one
hundred different configurations of the perturbations inside
the cavity, and ��S11�f�� represents the standard deviation of
the one hundred different measurements for cavity �S11�f�� at
frequency f . The frequency f0=3 GHz represents the lowest
of the frequencies that we experimentally tested, and there-
fore the worst-case scenario for performing the approxima-
tion to true ensemble averaging. Based on the area and pe-
rimeter of the cavity, the Weyl formula �30� yields a typical
mean-spacing of �fWeyl	42 MHz between the eigenmodes
of the cavity around f0. From Fig. 2, it is observed that the
experimentally determined correlations in frequency die off
within one mean-spacing �fWeyl. However, the correlation
function in Fig. 2 is similar to those obtained under local,
rather than global, perturbations of the system �38�. We have
previously identified the fact that short ray orbits inside the
cavity will produce systematic deviations of the finite en-
semble average from a true ensemble average �20�. We there-
fore invoke ergodicity and also employ frequency averaging
of the data. Since the frequency averaging ranges that we use
below are very much larger than �fWeyl �typically by a factor
of �20�, this confirms that our frequency �in addition to
perturber configuration averaging� is an effective means of
approximating a true ensemble average.

The second step of our normalization procedure is what
we refer to as the “radiation case” �Fig. 1�b��. In this step, the
side walls of the cavity are completely lined with �2 mm
thick microwave absorber �ARC-Tech DD 10017� which
gives about 20–25 dB reflection loss between 3 and 18 GHz
for normal incidence. The perturbers are removed so as not
to produce any reflections back to the ports. Port-1 and
Port-2 are left untouched so that they retain the same cou-
pling geometry as in the cavity case. The radiation measure-
ment now involves measuring the resultant 2�2-scattering

matrix, which we label SJrad=� S11rad S12rad

S21rad S22rad
�, from 3 to 18 GHz

with the same 16 000 frequency steps as in the cavity case.
The microwave absorber serves to severely suppress any re-
flections from the side-walls. This effectively simulates the
situation of the side-walls of the cavity being moved out to
infinity �radiation-boundary condition�. The off-diagonal

terms in SJrad correspond to direct-path processes between the
two ports. The contribution of these terms has been taken
into account in the analysis and results that follow �Secs.
III A–III D�. The hazards associated with ignoring these
terms in the normalization process deserve special mention
and are discussed in Sec. IV.

Having measured the ensemble of cavity SJ and the corre-

sponding radiation SJrad, we convert these quantities into the

corresponding cavity impedance ZJ and radiation impedance

ZJrad matrices respectively using Eq. �4�, where each port has
a single operating mode with characteristic impedance of

FIG. 2. �Color online� Spectral correlation function ���f�

=
��S11�f0���S11�f0+�f���−��S11�f0�����S11�f0+�f���

��S11�f0����S11�f0+�f��
of the measured cavity reflec-

tion coefficient. Each red-circle symbol represents the correlation
between the one hundred different renditions of the Loss Case 0
cavity �S11� at frequency f0=3 GHz with the one hundred different
renditions of the same cavity �S11� at frequency f0+�f . The mean
mode-spacing is determined to be �fWeyl
42 MHz. Inset: The PDF
of the raw-data transmission coefficient of the two ports �P�Tcoup��
is shown for Loss Case 0 cavity from 3 to 18 GHz. Note the broad
range of coupling values present in the unnormalized data.
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50 
 over the frequency range of the experiment.

Every measured ZJ is then normalized with the corre-

sponding measured ZJrad at the same frequency using Eq. �2�.
Having obtained the normalized impedance matrix zJ, it is
then converted to the normalized scattering matrix sJ using
Eq. �3�, and the normalized admittance matrix yJ �yJ=zJ−1�.
These normalized quantities represent the corresponding
electromagnetic response of the chaotic cavity in the limit of
perfect coupling between the driving ports and the cavity
over the entire frequency range of the experiment from
3 to 18 GHz.

III. EXPERIMENTAL RESULTS

In this section, we give our experimental results on the
universal statistical fluctuations in the eigenvalues of sJ, zJ,
and yJ. Each 2�2 sJ, zJ, or yJ yields two complex eigenvalues
which possess certain universal statistical properties in their
marginal and joint PDFs.

A. Statistical independence of ��JsJ� and ��JsJ

Having obtained the ensemble of normalized sJ, we diag-
onalize sJ using an eigenvalue decomposition,

sJ=VJsJ�
J

sJVJsJ
−1;where, VJsJ is the 2�2 eigenvector matrix of sJ;

and �JsJ is a diagonal matrix containing the two complex ei-
genvalues of sJ. In the time-reversal symmetric, lossless limit,

sJ is unitary. This dictates that VJsJ be an orthogonal matrix and

�J̃sJ= � exp�i�̃1� 0

0 exp�i�̃2� �. In the presence of loss, VJsJ is no longer or-

thogonal and sJ now has complex, subunitary eigenvalues,

i.e., �JsJ=� ��1�ei�1 0

0 ��2�ei�2
�, where ��1,2�	1. Reference �24� has

shown that for a one-port system, the magnitudes and phases
of the normalized one-port scattering coefficient s are statis-
tically independent. The independence was shown to be ex-
tremely robust and is unaffected by the presence of loss. For
a two-port setup, as in the experiments presented in this pa-
per, this would imply statistical independence of the magni-
tude and phases of the eigenvalues of sJ.

To test this hypothesis, the two complex eigenvalues of
the sJ ensemble are grouped into one list, which we shall refer

to as “�̂sJ.” We observe that grouping the two eigenvalues
together as opposed to randomly choosing one of the two
eigenvalues does not change the statistical properties of the
results that follow. Figure 3�a� shows a plot in the complex
plane of the eigenvalue density for a representative set of
measured sJ ranging between 7.6 to 8.1 GHz where the loss-
parameter is roughly constant. The gray scale level at any
point in Fig. 3�a� indicates the number of points for

�Re��̂sJ� , Im��̂sJ�
 that lies within a local rectangular region of
size 0.01�0.01. Next, angular slices which subtend a polar
angle of � /2 are taken and histogram approximations to the

PDF of ��̂sJ� of the points lying inside each of the four slices
are computed. This is shown by the stars, hexagons, circles
and squares in Fig. 3�b�. It can be observed that the PDF
approximations are essentially identical and independent of
the angular-slice. By grouping the real part of the eigenval-

ues of zJ in to one list and computing its variance �i.e.,
�

Re��̂zJ�
2 �, we solve the inverse polynomial function

k2 / ��kn
2Q�=
−1��

Re��̂z↔�
2 � to yield an estimate of k2 / ��kn

2Q�
=1.2±0.1 for this data set. The blue solid line shows the
numerical RMT prediction �39� which is computed using a
single value of k2 / ��kn

2Q�=1.2. The red error bars in Fig.
3�b� which are representative of the typical statistical binning
error of the experimental histograms show that the data
agrees well with the numerical RMT PDF.

In Fig. 3�c�, the histogram approximations of the phase of
the points lying within two-annular rings defined by 0

� ��̂sJ��0.35 �solid diamonds� and 0.35� ��̂sJ��0.8 �hollow
triangles� are shown. A nearly uniform distribution is ob-
tained for both cases indicating that the PDF of the phase of

�̂sJ is independent of the radius of the annular ring. Also
shown in blue is the uniform distribution with P���
=1/ �2��. Figure 3 thus supports the hypothesis that the mag-
nitude and phase of the eigenvalues of sJ are statistically in-
dependent of each other and that the eigenphase of sJ is uni-
formly distributed from 0 to 2�.

B. Joint PDFs of eigenphases of sJ

Section III A has established the uniform distribution of
the marginal PDF of the eigenphases of sJ. Here we explore

FIG. 3. �Color online� �a� The density of eigenvalues of �̂sJ in the
complex plane is shown for frequencies in the range
7.6 GHz to 8.1 GHz for Loss Case 0. The gray-scale code white,
light gray, dark gray, black are in ascending density order. �b� An-
gular slices �90°� with the symbols �stars, hexagons, circles,

squares� indicate regions where the PDF of ��̂sJ� of the data in �a� is
calculated and shown. Observe that the four PDFs are nearly iden-
tical. The blue solid line is the numerical prediction from the ran-
dom matrix theory using the loss parameter k2 / ��kn

2Q�=1.2. The
red error bars indicate the statistical binning error in the histograms.
�c� Experimental histogram approximations to the PDF of the

eigenphase of sJ �i.e.,��̂sJ
�. Two annular rings defined by 0� ��̂sJ�

�0.35 and 0.35� ��̂sJ��0.8 of the data in �a� are taken and the
histograms of the phase of the points within these regions are
shown as the solid diamonds and hollow triangles, respectively. The
red error bars indicate typical statistical binning errors for the data.
The blue solid line is a uniform distribution �P���=1/ �2���.
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the statistical inter-relationships between the two eigen-
phases of sJ by looking at their joint PDFs, i.e., P��1 ,�2�. In
the lossless limit the eigenvalues of sJ are of unit modulus and
their marginal distribution is uniform in phase along the unit
circle. Reference �8� has shown that the joint PDF of the
eigenphases �1 and �2, shows a clear anticorrelation, i.e.,
P��1 ,�2�� �ei�1 −ei�2��, where �=1�2� for a time-reversal
�broken� GOE�GUE� system. In the lossless GOE case this
anticorrelation is ��1�2�	−0.216, where −���1,2��

�21�. As losses are introduced, the eigenvalues of sJ are no
longer confined to move along the unit circle; but rather are
distributed inside the unit circle in a manner dependent upon
the loss in the system �as was shown in Fig. 3�a��. The sub-
unitary modulus of the eigenvalues thus presents an extra
degree of freedom for eigenvalue avoidance, hence we ex-
pect a reduced anticorrelation of the eigenphases as the
losses increase. To our knowledge, there exists no analytic
formula for the evolution of the joint PDF of the eigenphases
of sJ as a function of loss. In the following paragraphs, we
thus compare our experimental results for the joint PDF of
the eigenphases of sJ with numerical computations of results
from the RMT �39�.

In order to make comparisons of the data with numerical
computations from the RMT, we transform the eigenphases
�1 and �2 to �1 and �2, as follows:

�1 = �1 − �2 − � + 2�H��2 − �1� ,

�2 = �2, �6�

where H�x� is the Heaviside step function �H�x�=0 for x
	0; H�x�=1 for x�0�. This transformation of variables has
the effect of making �1 and �2 statistically independent, with
all the correlation information between �1 and �2 being con-
tained in �1; and �2 being uniformly distributed �as shown in
Fig. 3�c��. In the lossless case, it can be easily deduced from
P��1 ,�2�� �ei�1 −ei�2��, that P��1�=cos��1 /2� /4 for �=1.

The top row of Fig. 4 shows the density plots of �1 and �2
for the three different loss-cases �Loss-Case 0: triangles,
Loss-Case 1: circles, Loss-Case 2: stars� in the frequency
range of 10.4–11.7 GHz. This corresponds to k2 / ��kn

2Q�
=1.6±0.1, 5.7±0.1, and 14.5±0.1, respectively. For the data
set represented by the triangles, the value of k2 / ��kn

2Q� was
determined by computing the variance of the real part of the
grouped eigenvalues of zJ �i.e., �

Re��̂zJ�
2 � and solving the in-

verse polynomial function k2 / ��kn
2Q�=
−1��

Re��̂zJ�
2 �. For the

data sets represented by the circles and stars, the value of
k2 / ��kn

2Q� was determined by computing the variance of the
real part of the grouped eigenvalues of zJ and Eq. �5�. As the
plots indicate, the statistical variation is entirely contained in
the �1 direction, with �2 being nearly uniformly distributed.
The gray scale on the plots indicates the number of points for
��1 ,�2
 which lie within a local rectangular region of size
0.01�0.01. The corresponding anticorrelation of the eigen-

FIG. 4. �Color online� �a� The joint PDF �P��1 ,�2�� of the transformed eigenphases �1 and �2 for Loss Case 0 �triangles: left�, Loss Case
1 �circles: center�, and Loss Case 2 �stars: right� in the frequency range of 10.4–11.7 GHz. The gray-scale code white, light gray, dark gray,
black are in ascending density order. �b� Marginal PDFs for �1 �Loss Case 0 �triangles: left�, Loss Case 1 �circles: center�, and Loss Case 2
�stars: right�� of the data shown in the top row. The dashed red line is the lossless prediction P��1�=cos��1 /2� /4. The blue solid lines are
the numerical RMT prediction for P��1� with k2 / ��kn

2Q�=1.6 �left�; 5.7 �center�, and 14.5 �right�.
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phases ��1�2�	−0.17,−0.16,−0.15�−���1,2��� for the
triangles, circles, and stars, respectively.

The bottom row of Fig. 4 shows histogram approxima-
tions to the marginal PDFs of �1 for all three cases of loss
�Loss-Case 0: triangles, Loss-Case 1: circles, Loss-Case 2:
stars� for the data shown in the top row. The blue solid line is
the numerical RMT computation for P��1� which is based
upon the loss parameters stated above. The red dashed line is
the predicted PDF of �1 in the lossless case. The red error
bars indicate the typical statistical binning error for the ex-
perimental PDF histograms. The agreement between the ex-
perimentally determined P��1� �symbols� and the numeri-
cally generated P��1� �blue trace� is good and well within the
error estimates. We observe that as the losses increase, the
histograms for P��1� tend to grow progressively wider and
develop smooth tails, which results in a reduced anticorrela-
tion between �1 and �2, as expected.

C. Joint PDF of eigenvalues of sJsJ †

We now consider the joint PDF of the eigenvalues of sJsJ †,
where † denotes the conjugate transpose. Since sJsJ † is Her-
mitian, its eigenvalues are purely real. The matrix sJsJ † is of
significant interest in the quantum-transport community as it
determines the conductance fluctuations of ballistic quantum
dots in the presence of dephasing/loss. Owing to the analogy
between the time-independent Schrödinger equation and the
two-dimensional Helmholtz equation, the microwave billiard
experiment presents itself as an ideal platform to test statis-
tical theories for these quantum fluctuations without the
complicating effects of thermal smearing �40� and Coulomb
interactions, as discussed in Ref. �41�.

Models have been introduced to quantify the loss of quan-
tum phase coherence �dephasing� of transport electrons in
quantum dots �42–45�. These models generally utilize a fic-
titious lead attached to the dot that has a number of channels
N� each with transparency ��. Electrons that enter one of the
channels of this lead are reinjected into the dot with a phase
that is uncorrelated with their initial phase, and there is no
net current through the fictitious lead. An alternative model
of electron transport employs a uniform imaginary term in
the electron potential �46,47�, leading to loss of probability
density with time, similar to the loss of microwave energy in
a cavity due to uniformly distributed losses in the walls and
lids. As far as the conductance is concerned, it was shown
that these two models are equivalent in the limit when the
number of channels in the dephasing lead N�→� and ��

→0, with the product �=N��� remaining finite �31,43,48�.
In this case, the dephasing parameter � is equivalent to a loss
parameter describing the strength of uniformly distributed
losses in the system. Other models have been proposed that
consider parasitic channels �43,49� or an “absorbing patch”
or “absorbing mirror” �50� to describe losses in a microwave
cavity. Here we examine the predictions of Brouwer and
Beenakker using the dephasing lead model in the limit men-
tioned above. In this case the dephasing parameter � is
treated as a loss parameter describing fairly uniformly dis-
tributed losses in our microwave cavity, and is found to be
proportional to the loss parameter k2 / ��kn

2Q� that we intro-

duced in this and other publications �23,24,41,51�.
Reference �31� has shown that the eigenvalues of sJsJ † can

be denoted as 1−T1 and 1−T2 �where T1 and T2 determine
the absorption strength of this fictitious port� with the statis-
tical properties of T1 and T2 dependent on the parameter �.
When �=0, T1, and T2 equal zero and sJ is unitary. As �
increases, T1 and T2 migrate towards 1. Equation �17a� �Eq.
�7� below� and Eq. �17b� of Ref. �31� are exact analytic ex-
pressions for the joint PDF of T1 and T2 in terms of � for
both the GOE and GUE cases, respectively. At all values of
�, the analytic expression for P�T1 ,T2 ;�� shows strong an-
ticorrelation between T1 and T2 �31�

P�T1,T2;�� =
1

8
T1

−4T2
−4 exp�−

1

2
��T1

−1 + T2
−1���T1 − T2���2�2

− 2e� + � + �e�� − ��T1 + T2��6 − 6e� + 4�

+ 2�e� + �2� + T1T2�24 − 24e� + 18� + 6�e�

+ 6�2 + �3�� . �7�

For our experiment, once the ensemble of sJ has been ob-
tained, T1 and T2 can be easily determined by computing the
eigenvalues of sJsJ †. In Fig. 5, contour density plots of
P�T1 ,T2� are shown for the Loss Case 0 �Fig. 5�a�:
3.2–4.2 GHz� and Loss Case 0 �Fig. 5�b�: 13.5–14.5 GHz�.
This corresponds to k2 / ��kn

2Q� values of 1.0±0.1 for Fig.
5�a� and 2.9±0.1 for Fig. 5�b�. These values of k2 / ��kn

2Q�
are determined from estimating the variance of the real part
of the grouped eigenvalues of zJ �i.e., �

Re��̂zJ�
2 � and solving the

inverse polynomial function k2 / ��kn
2Q�=
−1��

Re��̂zJ�
2 � for

both data sets. The color-scale level indicates the number of
points that lie in a local rectangular region of size 0.01
�0.01 for Fig. 5�a� and 0.005�0.005 for Fig. 5�b� �note the
change in scales for the plots�. We observe that as losses
increase the cluster of T1 and T2 values which are centered
around �0.75 for Fig. 5�a� migrates towards values of T1
and T2 approaching 1 �Fig. 5�b��. We also observe a strong
anticorrelation in P�T1 ,T2� for T1=T2. This anticorrelation is

FIG. 5. �Color online� The experimental joint PDF of T1 and T2

�i.e., P�T1 ,T2�� for Loss Case 0: 3.2–4.2 GHz �a� and
13.5–14.5 GHz �b�. The color codes blue, green, yellow, and red
are in ascending density order. The black contours are theoretical
predictions for P�T1 ,T2 ;�� obtained from Eq. �7� for �=12.4 �a�
and �=36.5 �b�.
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manifested in all the data measured at varying degrees of loss
from k2 / ��kn

2Q�=0.9 to 28.
To estimate the value of � for our experimental data sets,

we derive an analytic expression for �T� in terms of � from
Eq. �7� �41�

�T� =
1

4�
�e−��4�e� − � − 1� + 4e��2e� − 2 − ��2 + �����− ��

− 2e�/2�e��2 + ��� − 2�� − 2���− �/2��
 , �8�

where ��z�=−�−z
� e−t

t dt is the exponential integral function. By
determining the value of �T� from the measured data set, Eq.
�8� then uniquely determines the corresponding value of
�����T��. This approach yields values of ��T�=12.4±0.1 and
��T�=36.5±0.1 for the data in Figs. 5�a� and 5�b�, respec-
tively. Using these values of ��T�, we plot the analytic con-
tour curves defined by Eq. �7� for the two loss cases, shown
as the solid black lines in Fig. 5. The theoretical curves re-
flect the same number of contour levels shown in the data.
We observe relatively good agreement between the theoreti-
cal prediction of Ref. �31� and the experimental data. This
agreement between the experimental data and the theoretical
prediction is also observed to extend over other loss-cases
and frequency ranges. Comparing the value of k2 / ��kn

2Q�
from each experimental data set with the corresponding
value of ��T�, we empirically determine a linear relation be-
tween k2 / ��kn

2Q� and �, i.e., �= �12.5±0.1�k2 / ��kn
2Q� using

70 points for ��T� between �11 and �300 �41�.

D. Marginal PDFs of eigenvalues of zJ and yJ

In this section we determine the marginal PDFs of the
eigenvalues of the normalized impedance zJ and normalized
admittance yJ. It has been theorized in Ref. �27� that these
two quantities have identical distributions for their eigenval-
ues. References �20,21� show that attaching an arbitrary loss-
less two-port network at the interface between the plane of
measurement and the cavity does not alter the statistics of zJ.
If we now assume that this lossless two port is a transmission
line with an electrical length equal to one-quarter wavelength
at the driving frequency, then the lossless two-port acts as an
“impedance inverter” �25� thereby presenting a cavity admit-
tance at the plane of measurement. This similarity in the
statistical description of zJ and yJ is predicted to be extremely
robust and independent of loss in the cavity, coupling, driv-
ing frequency, etc.

For our experimental test of this prediction, we consider
the three loss cases, Loss Case 0, 1, and 2, in the frequency
range 10.5–12 GHz. By an eigenvalue decomposition, each
zJ and yJ matrix yields two complex eigenvalues, which we

group together to form �̂zJ and �̂yJ, respectively. We observe
that grouping the two eigenvalues together as opposed to
randomly considering one of the two eigenvalues separately
does not alter the statistical results that follow. Histograms of

the real and imaginary parts of �̂zJ and �̂yJ are plotted in Fig. 6.
The hollow stars, circles and triangles in Fig. 6�a� �Fig. 6�b��
correspond to the histogram approximations of the PDF of

Re��̂zJ� �Im��̂zJ�� for Loss case 0, 1, and 2, respectively. The

evolution of these PDFs for Re��̂zJ� and Im��̂zJ� with increas-
ing loss are in qualitative agreement with the description
given in Ref. �21�. As losses increase, we observe that the

PDFs of Re��̂zJ� shift from being peaked at Re��̂zJ��0.6
�Loss Case 0� to developing a Gaussian-type distribution that

peaks near Re��̂zJ��1 �Loss Case 2�. In Fig. 6�b�, as losses
increase, the PDFs lose their long tails and become sharper.
The solid stars, circles and triangles in Fig. 6�a� �Fig. 6�b��
correspond to the histogram approximations of the PDF of

Re��̂yJ� �Im��̂yJ�� for Loss Case 0, Loss Case 1, and Loss Case
2, respectively. The agreement between the PDF approxima-

tions for Re��̂zJ� and Re��̂yJ� �Im��̂zJ� and Im��̂yJ�� is good for
all the three loss cases. The red error bars are representative
of the statistical error introduced from the binning of the data
in the histograms. By computing the variance of the PDFs

for Re��̂zJ� and by using the inverse polynomial function
k2 / ��kn

2Q�=
−1��
Re��̂zJ�
2 �, we obtain a loss parameter of

k2 / ��kn
2Q�=1.9±0.1 �Loss Case 0 stars�; From the variance

of the PDFs for Re��̂zJ� and by Eq. �5�, we obtain a loss
parameter of k2 / ��kn

2Q�=6.3±0.1 �Loss Case 1 circles�, and
k2 / ��kn

2Q�=16±0.1 �Loss Case 2 triangles�. Using these loss
parameter values, a Monte Carlo RMT computation �39�
yields the solid blue lines which simultaneously fit the data
shown in both Figs. 6�a� and 6�b� for the three loss cases.
The agreement between the experimentally observed values
and the RMT result are in good agreement for all three cases
and within the bounds of the error bars.

We observe that there is a robust agreement between the

distributions for Re��̂zJ� and Re��̂yJ� as well as between

Im��̂zJ� and Im��̂yJ� over a broad range of frequencies, cou-
pling conditions and loss. To highlight this robust nature, in

Fig. 7 we plot the variance of Re��̂zJ� �blue squares�, Re��̂yJ�

FIG. 6. �Color online� PDFs for the real �a� and imaginary �b�
parts of the grouped eigenvalues of the normalized cavity imped-

ance �̂zJ �hollow stars: Loss Case 0; hollow circles: Loss Case 1;
hollow triangles: Loss Case 2� in the frequency range of
10.5–12 GHz. The PDFs for the real �a� and imaginary �b� parts of

the grouped eigenvalues of the normalized cavity admittance �̂yJ

�solid stars: Loss Case 0; solid circles: Loss Case 1; solid triangles:
Loss Case 2� in the frequency range of 10.5–12 GHz are also
shown. The red error bars indicate the typical statistical binning
error of the data. Also shown are the single parameter, simultaneous
fits for both impedance and admittance PDFs �blue solid lines�,
where the loss parameter k2 / ��kn

2Q� is obtained from the variance
of the data in �a�.
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�green hexagons�, Im��̂zJ� �red stars�, and Im��̂yJ� �black
circles� for a Loss Case 0 cavity measurement. Each symbol
corresponds to a 1 GHz wide sliding window that steps ev-
ery 500 MHz over the frequency range from 6 to 18 GHz. It
can be seen that the four symbols closely overlap each other
over the entire frequency range. The agreement between the
symbols �as predicted by Refs. �20,21,27�� is remarkable de-
spite the variation in coupling, frequency and loss �which
varies from k2 / ��kn

2Q��1 to 3.5 over this frequency range�
within the cavity.

IV. IMPORTANCE OF THE OFF-DIAGONAL RADIATION

ELEMENTS IN ZJrad

The radiation impedance approach to filter out the direct
processes involved in a chaotic scattering experiment relies
on the accuracy of the measured radiation impedance matrix.
This section explains a key technical issue faced while ex-
perimentally measuring the radiation impedance matrix of
the driving ports; specifically, the presence of nonzero, off-
diagonal terms in the measured radiation impedance matrix.

The conjecture that the statistical properties of real-world,
physically realizable, wave-chaotic scattering systems can be
modeled by an ensemble of large matrices with random ele-
ments �governed by certain system symmetries� is applicable
only in the semiclassical or short wavelength limit. For the
purpose of this conjecture, in the presence of ports, a consis-
tent definition of the short wavelength limit is that, when
taking this limit, the size of the ports connecting to the cavity
remain constant in units of wavelength. With this definition
of the limit, the ratio of the distance between the ports to

their size approaches infinity. Thus ZJrad becomes diagonal
and approaches a constant at short wavelength.

The conjecture that the RMT describes the scattering
properties in a specific case assumes that, in the short wave-
length limit, rays entering the cavity bounce many times be-
fore leaving �i.e., they experience the chaotic dynamics�.
With the above definition of the short wavelength limit of the
ports, this would be the case since the fraction of power
reflected back to a port via short �e.g., one or two bounce�

paths approaches zero. At finite wavelength, however, it can
be anticipated that there could be noticeable deviations from
the RMT predictions and that these would be associated with
short ray paths. In our experimental determinations of ZJrad
we have effectively eliminated the largest source of such
nonuniversal behavior, namely, the short ray paths that go
directly between ports 1 and 2. This is the case because these

ray paths are already included in our experimental ZJrad.
In particular, lining the inner walls of the cavity with mi-

crowave absorber for the radiation case of the experiment
serves to essentially eliminate reflections off the side walls,
but plays no role in suppressing the direct-path interaction
�cross talk� between the two ports. This cross talk is mani-
fested primarily as nonzero, off-diagonal terms in the mea-

sured ZJrad with enhanced frequency dependence relative to
the one-port case.

Figure 8 shows the magnitudes of the elements of the

radiation impedance matrix ZJrad for the two-port setup shown
in Fig. 1�b�. Frequency ranges where there is significant
cross-talk between the two ports are manifested as large val-
ues of �Z21rad�= �Z12rad�. Note the complicated structure of the

measured elements of ZJrad.
To highlight the contribution of short ray paths, the inset

of Fig. 8 shows the PDF of the eigenvalues of the normalized
impedance for two scenarios of the Loss Case 0 cavity in the
4–5 GHz frequency range. The circles represent the PDF of

Im��̂zJ� that is obtained by setting the off-diagonal terms of
the measured radiation impedance matrix to zero. The solid

stars, however, represent the PDF of Im��̂zJ� which is ob-
tained by considering all the elements of the measured radia-
tion impedance matrix during the normalization process
�Eq. �2�� to obtain zJ. The red error bars are representative of

FIG. 7. �Color online� The variance of Re��̂zJ� �blue squares�,
Re��̂yJ� �green hexagons�; Im��̂zJ� �red stars�, and Im��̂yJ� �black
circles� distributions are shown as a function of frequency from
6 to 18 GHz for Loss Case 0. The agreement between these four
quantities is good and robust over the entire frequency range despite
the change in cavity Q.

FIG. 8. �Color online� Magnitude of the elements of the mea-
sured radiation impedance matrix are shown as a function of fre-
quency from 3 to 18 GHz for the setup in Figs. 1�b� and 1�c�. Inset:

PDF of Im��̂zJ� for the Loss Case 0 cavity in the frequency range
4–5 GHz, which is obtained by considering the full 2�2 radiation
impedance matrix �stars� and by considering only the contribution
of the diagonal elements of the radiation impedance matrix
�circles�. The blue solid line is the RMT numerical prediction for
k2 / ��kn

2Q�=1 which is obtained from the variance of the data rep-
resented by the stars.
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the statistical error introduced from the binning of the data in
the histograms indicated by the solid stars. We observe a
clear discrepancy between the two curves and also note that
the PDF represented by the circles does not peak at 0. Using

the variance of the measured Im��̂zJ� �stars� and the inverse
polynomial function k2 / ��kn

2Q�=
−1��
Im��̂zJ�
2 �, we obtain a

loss parameter value of k2 / ��kn
2Q�=1.0±0.1 for this fre-

quency range. We use this value to generate the PDF of

Im��̂zJ� using random matrix Monte Carlo simulation �39�.
The resultant numerical prediction is shown as the solid blue
line. We observe good agreement between the numerical
RMT prediction and the experimentally determined PDF of

Im��̂zJ� by considering the full 2�2 radiation impedance ma-
trix. Our choice of the 4–5 GHz range is motivated by the
fact that in this range, the ratio of �Z21rad� / �Z22rad� is the larg-
est. This result establishes the importance of off-diagonal

terms in ZJrad, and helps to validate our approach to removing
short-path direct processes between the ports.

V. SUMMARY

The results discussed in this paper are meant to provide
conclusive experimental evidence in support of the radiation
impedance normalization process introduced in Ref. �21� for
multiple port, wave-chaotic cavities. The close agreement
between the experimentally determined PDFs and those gen-
erated numerically from the RMT support the use of the
RMT to model statistical aspects of real world, semiclassical
wave-chaotic systems. This paper is a natural two-port ex-
tension of the one-port experimental results of Refs. �23,24�.
The extension to two ports makes these results of much
broader appeal to other fields of physics and engineering

where wave-transport through complex, disordered media is
of interest.

We have shown that the full 2�2 radiation impedance
matrix of the two-driving ports can accurately quantify the
nonideal and system-specific coupling details between the
cavity and the ports as well as the cross talk between ports,
over any frequency range. Hence, given our experimentally
measured, nonideally coupled cavity data, this normalization
procedure allows us to retrieve the universal statistical fluc-
tuations of wave-chaotic systems which are found only in the
limit of perfect coupling. We have experimentally tested the
evolution of these universal fluctuations traversing from the
regime of intermediate to high loss and for different coupling
geometries. We find good agreement between the PDFs ob-
tained experimentally to those generated numerically from
the RMT. Of particular significance is the joint PDF of the
eigenphases of sJ, and the eigenvalues of sJsJ † which lead to
the universal conductance fluctuations statistics of quantum-
transport systems. Our results are not restricted to
microwave-billiard experiments but also apply to other allied
fields, such as quantum-optics, acoustics and electromagnetic
compatibility.
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